ООО КСТК
Строительные советы
Перед окраской металлической мебели, планок, трубок и т.п. протрите их тряпкой, смоченной в уксусе, и дайте им высохнуть.После этого краска лучше ляжет и не будет облущиваться.

Минеральные вяжущие вещества

Минеральными вяжущими веществами называют тонко измельченные порошки, образующие при смешивании с водой пластичное тесто, под влиянием физико-химических процессов переходящее в камневидное состояние. Это свойство вяжущих веществ используют для приготовления на их основе растворов, бетонов, безобжиговых искусственных каменных материалов и изделий. Различают минеральные вяжущие вещества воздушные и гидравлические.

Вяжущие вещества автоклавного твердения, эффективно твердеющие только при автоклавной обработке — давлении насыщенного пара 0,8...1,2 МПа и температуре 17О...2ОО°С. В группу вяжущих веществ автоклавного твердения входят известково-кремнеземистые и известково-нефелиновые вяжущие.

Гипсовые вяжущие вещества

Гипсовые вяжущие вещества делят на две группы: низкообжиговые и высокообжиговые.

Сырьем для производства гипсовых вяжущих служат природный гипсовый камень и природный ангидрид CaSO4, а также отходы химической промышленности, содержащие двуводный или безводный сернокислый кальций, например фосфогипс.

В этих условиях образуются мелкие кристаллы полуводного сернокислого кальция бета-модификации; такой гипс обладает повышенной водопотребностью (60...65% воды). Избыточная вода, т. е. сверхпотребная на гидратацию гипса (15%), испаряется, образуя поры, вследствие чего затвердевший гипс имеет высокую пористость (до 40%) и соответственно небольшую прочность. Производство гипса складывается из дробления, помола и тепловой обработки (дегидратации) гипсового камня. Имеется несколько технологических схем производства гипсового вяжущего: в одних помол предшествует обжигу, в других помол производится после обжига, а в третьих помол и обжиг совмещаются в одном аппарате. Последний способ получил название обжига гипса во взвешенном состоянии. Тепловую обработку гипсового камня производят в варочных котлах, сушильных барабанах, шахтных или других мельницах.

При затворении порошка гипса водой полуводный сернокислый кальций CaSO4-0,5H2O, содержащийся в нем, начинает растворяться до образования насыщенного раствора и одновременно гидратироваться, присоединяя 1,5 молекулы воды и переходя в двугидрат CaSO4-2H2O по уравнению:

CaSO4-0,5H2O+l,5H2O=CaSO*2H2O

Растворимость двугидрата примерно в 5 раз меньше растворимости исходного порошка — полугидрата CaSO4-0,5H2O. В результате образовавшийся насыщенный раствор полугидрата оказывается пересыщенным по отношению к двугидрату. Пересыщенный раствор в обычных условиях не может существовать — из него выделяются мельчайшие частицы твердого вещества — двуводного сернокислого кальция. По мере накопления этих частиц они склеиваются между собой, вызывая загустевание (схватывание) теста. Затем мельчайшие частицы гидрата начинают кристаллизоваться, определяя этим образование прочного гипсового камня. Дальнейшее увеличение прочности гипса происходит вследствие высыхания твердеющей массы и более полной кристаллизации при этом. Твердение гипса можно ускорить сушкой, но при температуре не выше 65°С во избежание обратной дегидратации двуводного гипса.

Быстрое схватывание гипса затрудняет в ряде случаев его использование и вызывает необходимость применения замедлителей схватывания (кератинового, известково-кератинового клея, сульфитно-дрожжевой бражки в количестве 0,1...0,3% от массы гипса). Замедлители схватывания уменьшают скорость растворения полуводного гипса и замедляют диффузионные процессы. При необходимости ускорить схватывание гипса к нему добавляют двуводный гипс, поваренную соль, серную кислоту. Одни из них повышают растворимость полуводного гипса, другие (двуводный гипс) образуют центры кристаллизации, вокруг которых быстро закристаллизовывается вся масса.

Применяется гипсовое вяжущее для производства гипсовых, гипсобетонных строительных изделий для внутренних частей зданий (перегородочных плит, панелей, сухой штукатурки, приготовления гипсовых и смешанных растворов, производства декоративных и отделочных материалов, например искусственного мрамора), а также для производства гипсоцементно-пуццолановых вяжущих. (прочн 10-18 МПа)

Высокопрочный гипс(ВЫСОКОПРОЧНЫЙ) является разновидностью полуводного гипса. Этот полуводный гипс а-модификации, который имеет более крупные кристаллы, обусловливающие меньшую водопотреб-ность гипса (40...45% воды), позволяет получать гипсовый камень с большей плотностью и прочностью. Получают его путем нагревания природного гипса паром под давлением 0,2...0,3 МПа с последующей сушкой при температуре 16О...18О°С. Прочность его за 7 сут достигает 15...40 МПа. Высокопрочный гипс выпускают пока в небольшом количестве и применяют в основном в металлургической промышленности для изготовления форм. Однако он успешно может заменить обыкновенное гипсовое вяжущее, обеспечив изделиям высокую прочность.

Основными характеристиками гипсовых вяжущих являются сроки схватывания, тонкость помола, прочность при сжатии и растяжении, водопотребность и др.

Гипсовое вяжущее является быстросхватывающим и быстротвердеющим вяжущим веществом. По срокам схватывания ГОСТ 125-79 предусматривает выпуск вяжущих:

В зависимости от степени помола различают вяжущие грубого, среднего и тонкого помола с максимальным остатком на сите с размером ячеек в свету 0,2 мм не более 23, 14 и 2% (обозначаемые соответственно индексами I, II и III).

Марку. гипсовых вяжущих характеризуют по прочности при сжатии образцов-балочек 40X40X160 мм в возрасте 2 ч после затворения водой. Например, гипсовое вяжущее с прочностью при сжатии 5,2 МПа, началом схватывания 5 мин, концом схватывания 9 мин и остатком на сите 0,2 мм 9%, т. е. вяжущее марки Г-5 быстротвердеющее, среднего помола, может быть записано в виде сокращенного обозначения Г-5АII.

Гипсовые вяжущие применяют при производстве гипсовой штукатурки, перегородочных стеновых плит и панелей, вентиляционных коробов и других деталей в зданиях и сооружениях, работающих при относительной влажности воздуха не выше 65%. Изделия из них обладают небольшой плотностью, несгораемостью и рядом других ценных свойств, но при увлажнении прочность их снижается.

Ангидритовое вяжущее получают обжигом природного двуводного гипса при температуре 600...700°С с последующим его измельчением с добавками — катализаторами твердения (известью, смесью сульфата натрия с медным или железным купоросом, обожженным доломитом, основным доменным гранулированным шлаком и др.). Ангидритовое вяжущее можно получить также путем помола природного ангидрита с указанными выше добавками.

CaSO4*2H2O=CaSO4+2H2O

Ангидритовый цемент — это медленно схватывающееся вяжущее вещество с началом схватывания не ранее 30 мин, концом — не позднее 24 ч. Марки ангидритового цемента по прочности при сжатии М50, 100, 150 и 200. Применяют ангидритовые цементы Для приготовления кладочных и отделочных растворов, бетонов, производства теплоизоляционных материалов, искусственного мрамора и других декоративных изделий.

Высокообжиговый гипс (эстрих-гипс) является разновидностью ангидритовых цементов. Его получают обжигом природного гипса или ангидрита при температуре 8ОО...1ООО°С с последующим тонким измельчением. При этом происходит не только полное обезвоживание, но и частичная диссоциация (разложение) ангидрита с образованием СаО (в количестве 3...5%) по реакции

CaSO4*2H2O=CaSO4+2H2O

CaSO4 = СаО + SO3.

При затворении водой СаО действует как катализатор по схеме твердения ангидритового цемента, рассмотренной выше. Высокообжиговый гипс медленно схватывается и твердеет, но водостойкость и прочность при сжатии (10... 20 МПа) позволяют успешно использовать его при устройстве мозаичных полов, изготовлении искусственного мрамора и др. Изделия из высокообжигового гипса мало-, тепло- и звукопроводны, они обладают по сравнению с изделиями из гипсового вяжущего более высокой морозостойкостью, повышенной водостойкостью и меньшей склонностью к пластическим деформациям.

Магнезиальные вяжущие вещества

Разновидностями магнезиальных вяжущих веществ являются каустический магнезит и каустический доломит.

Каустический магнезит получают при обжиге горной породы магнезита MgCO3 в шахтных или вращающихся печах при 650... 850°С. В результате MgCO3 разлагается по схеме

MgCO3 = = MgO + CO2.

Оставшееся твердое вещество (окись магния) измельчают в тонкий порошок.

Каустический доломит MgO и СаСО3 получают путем обжига природного доломита CaCO3-MgCO3 с последующим измельчением его в тонкий порошок. При обжиге доломита СаСОз не разлагается и остается инертным как балласт, что снижает вяжущую активность каустического доломита по сравнению с каустическим магнезитом.

MgO+MgCl2+H2O?2MgO*MgCl*6H2O

Магнезиальные вяжущие затворяют не водой, а водными растворами солей сернокислого или хлористого магния. Магнезиальные вяжущие, затворенные на растворе хлористого магния, дают большую прочность, чем на растворе сернокислого магния. Магнезиальные вяжущие, являясь воздушными, слабо сопротивляются действию воды. Их можно использовать только при затвердении на воздухе с относительной влажностью не более 60%. Каустический магнезит легко поглощает влагу и углекислоту из воздуха, в результате чего образуются гидрат оксида магния и углекислый магний. В связи с этим каустический магнезит хранят в плотной герметической таре. На основе магнезиальных вяжущих в прошлом времени изготовляли ксилолит (смесь вяжущего с опилками), используемый для устройства полов, а также фибролит и другие теплоизоляционные материалы. В настоящее время применение магнезиальных вяжущих резко сократилось

Кислотоупорные цементы и жидкое стекло

Кислотоупорные цементы состоят из смеси водного раствора силиката натрия (растворимого стекла), кислотоупорного наполнителя и добавки — ускорителя твердения. В качестве микронаполнителя используют кварц, кварциты, андезит, диабаз и другие кислотоупорные материалы; ускорителем твердения служит кремнефтористый натрий. Вяжущим материалом в кислотоупорном цементе является растворимое стекло — водный раствор силиката натрия Na2O-SiO2 или силиката калия К2О-nSiO2. Величина п указывает на отношение числа молекул кремнезема к числу молекул щелочного оксида и называется модулем стекла, он колеблется от 2,5 до 3,5.

Добавка кремнефтористого натрия также повышает водостойкость и кислотоупорность цемента. Отечественная промышленность выпускает кислотоупорный кварцевый кремнефтористый цемент, состоящий из смеси тонкомолотого чистого кварцевого песка 15...30% и кремнефтористого натрия Na2SiF6 — 4...6% от массы наполнителя.

Кислотоупорные цементы применяют для футеровки химической аппаратуры, возведения башен, резервуаров и других сооружений химической промышленности, а также для приготовления кислотоупорных замазок, растворов и бетонов.

Как указывалось ранее, для приготовления кислотоупорного цемента применяют растворимое стекло. Растворимое стекло получают при сплавлении в течение 7... 10 ч в стекловарочных печах при 1300... 1400°С кварцевого песка, измельченного и тщательно смешанного с кальцинированной содой, сульфатом натрия или с поташом К2СО3. Полученная стекломасса поступает из печи в вагонетки, где быстро охлаждается и распадается на куски. Застывшие куски называют "силикат-глыба". Это стекло растворимо в воде при обычных условиях, но при действии пара высокого давления 0,5...0,6 МПа и температуре около 150°С сравнительно быстро переходит в жидкое состояние.

Твердеет растворимое стекло (довольно медленно) только на воздухе вследствие выделения и высыхания аморфного кремнезема под действием углекислоты воздуха по реакции

Na2Si03 + СО2 + 2Н2О ? Si (ОН) 4 + Na2CO3

Однако глубина проникания углекислоты воздуха сравнительно невелика и положительное ее действие наблюдается только на поверхности.

Ускоряет твердение растворимого стекла добавка катализатора — кремнефтористого натрия Na2SiF6. Последний вступает во взаимодействие с растворимым стеклом, в результате чего быстро образует гель кремнекислоты — клеящее вещество, что приводит к быстрому твердению системы:

Na2SiF6 + 2Na2Si03 + 6Н2О -+? 6NaF + 3Si (ОН) 4

Силикат-глыбу можно транспортировать в таре или навалом. Растворимое стекло, имеющее сиропообразную консистенцию, транспортируют в бочках, стеклянных баллонах. Растворимое стекло применяют для приготовления кислотостойких и жароупорных обмазок. Нельзя применять растворимое стекло для конструкций, подверженных длительному воздействию воды, щелочей и фосфорной, фтористо-водородной или кремнефтористо-водородной кислоты.

Кислотоупорный цемент не водостоек; разрушается от воздействия воды и слабых кислот. Для повышения водостойкости в состав цемента вводят 0,5% льняного масла или 2% гидрофоби-зующей добавки. Полученный таким образом гидрофобизованный цемент называют кислотоупорным водостойким цементом (КВЦ).

Для повышения кислотостойкости кислотоупорных бетонов рекомендуется обрабатывать их поверхность разбавленной соляной или серной кислотой, раствором хлористого кальция или хлористого магния.

Воздушная строительная известь

Строительную известь получают путем обжига (до удаления углекислоты) из кальциево-магниевых горных пород — мела, известняка, доломитизироваиных и мергелистых известняков, доломитов.

Для производства тонкодисперсной строительной извести гасят водой или размалывают негашеную известь, вводя при этом минеральные добавки в виде гранулированных доменных шлаков, активные минеральные добавки или кварцевые пески. Строительную известь применяют для приготовления строительных растворов и бетонов, вяжущих материалов и в производстве искусственных камней, блоков и строительных деталей.

В зависимости от условий твердения различают строительную известь воздушную, обеспечивающую твердение строительных растворов и бетонов и сохранение ими прочности в воздушно, сухих условиях, и гидравлическую, обеспечивающую твердение растворов и бетонов и сохранение ими прочности как на воздухе так и в воде. Воздушная известь по виду содержащегося в ней основного оксида бывает кальциевая, магнезиальная и доломитовая. Воздушную известь подразделяют на негашеную и гидратную (гашеную), получаемую гашением кальциевой, магнезиальной и доломитовой извести. Гидравлическую известь делят на слабогидравлическую и сильногидравлическую. Различают гидравлическую известь комовую и порошкообразную. Порошкообразная известь бывает двух видов: молотая и гидратная (гашенная вода). Комовую известь выпускают без добавок и с добавками.

Строительную воздушную известь получают из кальциево-магниевых карбонатных пород. Технологический процесс получения извести состоит из добычи известняка в карьерах, его подготовки (дробления и сортировки) и обжига. После обжига производят помол комовой извести, получая молотую негашеную известь, или гашение комовой извести водой, получая гашеную известь.

Основным процессом при производстве извести является обжиг, при котором известняк декарбонизуется и превращается в известь по реакции СаСОз ?? СаО + СО2. В заводских условиях температура обжига известняка зависит от плотности известняка, наличия примесей, типа печи и ряда других факторов и составляет обычно 11ОО...12ОО°С.

При обжиге из известняка удаляется углекислый газ, составляющий до 44% его массы, объем же продукта уменьшается примерно на 10%, поэтому куски комовой извести имеют пористую структуру. Обжиг известняка производят в различных печах: шахтных, вращающихся, в "кипящем слое", во взвешенном состоянии и т. д. Полученный при обжиге карбонатных пород полупродукт носит название комовой извести-кипелки. В дальнейшем она поступает на помол или гашение.

Молотая негашеная известь с добавками производится 1-го и 2-го сортов и гидратная (гашеная) без добавок и с добавками двух сортов: 1-го и 2-го. Воздушная известь должна удовлетворять требованиям табл. 5.4.

В соответствии с требованиями ГОСТ 9179—77 негашеную известь следует измельчать до тонкости, при которой остаток при просеивании пробы через сита № 02 и № 008 должен быть соответственно не более 1,5 и 15%. Обычно заводы выпускают известь, характеризующуюся остатками на сите № 008 до 2...7%, что примерно соответствует удельной поверхности 3500... 5000 см2/г.

Молотую негашеную известь применяют без ее предварительного гашения, что имеет ряд преимуществ: исключаются отходы в виде непогасившихся зерен, используется тепло, которое выделяется при гидратации извести, что ускоряет процессы твердения извести. Изделия из этой извести имеют и большую плотность, прочность и водостойкость.

Для ускорения твердения растворных и бетонных смесей на молотой негашеной извести в их состав вводят хлористый кальций, а для замедления твердения в начальный период (схватывания) добавляют гипс, серную кислоту и сульфитно-спиртовую барду- Добавка гипса и хлористого кальция, кроме того, повышает прочность растворов и бетонов, а добавки замедлителей твердения предупреждают образование трещин, что возможно при отсутствии определенных условий твердения.

Гидратная известь. Известь воздушная отличается от других вяжущих веществ тем, что может превращаться в порошок не только при помоле, но и путем гашения — действие воды на куски комовой извести с выделением значительного количества тепла по реакции

Стехиометрически для гашения извести в пушонку необходимо 32% воды от массы СаО. Практически в зависимости от состава извести, степени ее обжига и способа гашения количество воды берут в 2, а иногда и в 3 раза больше, так как в результате выделения тепла при гашении происходит парообразование и часть воды удаляется с паром. На скорость гашения извести оказывают влияние температура и размеры кусков комовой извести. С повышением температуры ускоряется процесс гашения. Особенно быстро процесс гашения протекает при гашении паром при повышенном давлении в закрытых барабанах.

В зависимости от скорости гашения различают строительную негашеную известь:

Гашение извести в пушонку производят в специальных машинах — гидраторах. Для гашения извести-кипелки в известковое тесто применяют известегаситель ЮЗ, в котором комовая известь одновременно размалывается, перемешивается с водой до образования известкового молока и сливается в сепаратор-отстойник. После отстаивания известкового молока образуется известковое тесто. Нельзя применять известковое тесто с большим содержанием непогасившихся зерен извести, так как гашение этих зерен может произойти в кладке, что приведет к растрескиванию затвердевшего известкового раствора.

Твердение извести может происходить только в воздушно-сухих условиях. Испарение воды (что имеет место при этом) вызывает слипание мельчайших частиц Са(ОН)2 в более крупные и их кристалллзацию. Кристаллы Са(ОН)2 срастаются друг с другом, образуя каркас, окружающий частицы песка. Наряду с этим происходит карбонизация гидрата оксида кальция за счет поглощения углекислоты воздуха по реакции

Са (ОН)2 + СО2 + пН2О = СаСОз + (п + 1) Н2О

Таким образом, твердение известковых растворов есть следствие их высыхания и образования кристаллического сростка Са(ОН)2, а также процесса образования углекислого кальция на поверхности изделия. Твердеет гашеная известь медленно, и прочность известковых растворов невысокая. Это объясняется тем, что кристаллизация гидрата оксида кальция происходит не интенсивно и кристаллы слабо связаны друг с другом. Кроме того, образовавшаяся на поверхности корка СаСОз препятствует прониканию воздуха внутрь известкового раствора и тормозит дальнейшее развитие процесса карбонизации. Гидрат оксида кальция кристаллизуется тем быстрее, чем интенсивнее испаряется вода, поэтому для твердения извести необходима положительная температура.

Воздушную известь широко применяют для приготовления строительных растворов в производстве известково-пуццолановых вяжущих, для изготовления искусственных каменных материалов — силикатного кирпича, силикатных и пеносиликатных изделий, шлакобетонных блоков, а также в качестве покрасочных составов.

Транспортируют комовую известь навалом, защищая от увлажнения и загрязнения, а молотую — в специальных бумажных мешках или металлических закрытых контейнерах. Известковое тесто перевозят в специально для этого приспособленных кузовах самосвалов. Известь негашеная должна храниться в закрытых складах, защищенных от попадания влаги. Гидратную известь можно хранить непродолжительное время в мешках и сухих складах. Молотую известь не следует хранить более 30 сут, так как она постепенно гасится влагой воздуха и теряет активность.

  1. комовая известь
  2. известковое тесто, известковое молоко
  3. гидратная известь (пушенка)
  4. молотая негашеная известь(кипелка)

Гидравлическая известь

Гидравлическая известь — продукт умеренного обжига при температуре 9ОО...11ОО°С мергелистых известняков, содержащих 6...20% глинистых примесей. При обжиге мергелистых известняков после разложения углекислого кальция часть образующейся СаО соединяется в твердом состоянии с оксидами SiO2; A12O3; Fe2O3, содержащимися в минералах глины, образуя силикаты 2CaO-SiO2, алюминаты СаО-А12О3 и ферриты кальция 2CaO-Fe2O3, обладающие способностью твердеть не только на воздухе, но и в воде. Так как в гидравлической извести содержится в значительном количестве свободный оксид кальция СаО, то она, так же как и воздушная известь, гасится при действии воды, причем чем больше содержание свободной СаО, тем меньше ее способность к гидравлическому твердению.

Строительную гидравлическую известь выпускают в виде тонкоизмельченного порошка, при просеивании которого остаток частиц на сите № 008 не должен превышать 15%. Кроме глинистых и песчаных примесей мергелистые известняки обычно содержат до 2...5% углекислого магния и другие примеси. Для производства гидравлической извести необходимо применять известняки с возможно более равномерным распределением глинистых и других включателей, так как от этого в значительной степени зависит качество получаемого продукта.

Для характеристики химического состава сырья, содержащего известняк и глину, а также готового вяжущего вещества обычно пользуются гидравлическим или основным модулем, который для гидравлической извести составляет 1,7...9:

m=%Ca0/[%(Si02 + Al203 + Fe203)]

Различают гидравлическую известь двух видов:

Гидравлическая известь, затворенная водой, после предварительного твердения на воздухе продолжает твердеть и в воде, при этом физико-химические процессы воздушного твердения сочетаются с гидравлическими. Гидрат оксида кальция при испарении влаги постепенно кристаллизуется, а под действием углекислого газа подвергается карбонизации. Гидравлическое твердение извести происходит в результате гидратации силикатов, алюминатов и ферритов кальция так же, как в портландцементе. Предел прочности образцов через 28 сут твердения должен быть не менее: для слабогидравлической и сильногидравлической со-ответственно при изгибе — 0,4 и 1,0 МПа и при сжатии — 1,7и 0,5 МПа.

Гидравлическая известь по химическому составу должна соответствовать требованиям, указанным в табл. 5.7. Она должна выдерживать испытание на равномерность изменения объема. Гидравлическую известь применяют в тонко измельченном виде для приготовления строительных растворов, предназначенных для сухой или влажной среды, бетонов низких марок и т. д. Гидравлическая известь дает менее пластичные, чем воздушная, растворы, быстрее и равномернее твердеющие по всей толще стены и обладающие большей прочностью.

Романцемент

Портландцемент — гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Его получают тонким измельчением обожженной до спекания сырьевой смеси известняка и глины, обеспечивающей преобладание в клинкере силикатов кальция. Спекшаяся сырьевая смесь в виде зерен размером до 40 мм называется клинкером; от качества его зависят важнейшие свойства цемента: прочность и скорость ее нарастания, долговечность, стойкость в различных эксплуатационных условиях.

Для регулирования сроков схватывания в обычных цементах марок 300...500 при помоле к клинкеру добавляют гипс не менее 1,0% и не более 3,5% от массы цемента в пересчете на ангидрид серной кислоты SO3, а в цементах высокомарочных и быстротвердеющих — не менее 1,5% и не более 4,0%. Портландцемент выпускают без добавок или с активными минеральными добавками.

Клинкер. Качество клинкера зависит от его химического и минералогических составов. Для производства портландцементного клинкера применяют известняк и глину. Известняк в основном состоит из двух оксидов: СаО и СО2, а глина — из различных минералов, содержащих в основном три оксида: SiO2, A12O3 и Fe2O3. В процессе обжига сырьевой смеси удаляется СО2, a оставшиеся четыре оксида: СаО, SiO2, Аl2Оз и Fe2O3 — образуют клинкерные минералы. Содержание оксидов в цементе примерно следующее: 64...67% СаО, 21...24% SiO2, 4...8% А12О3, 2...4%

Fe2O3.

Кроме указанных основных оксидов в портландцементном клинкере могут присутствовать MgO и щелочные оксиды К2О и Na2O, снижающие качество цемента. Оксид магния, обожженный при температуре около 1500°С, при взаимодействии с водой очень медленно гасится и вызывает появление трещин в уже затвердевшем растворе или бетоне, поэтому содержание оксида магния в портландцементе не должно быть более 5%. Наличие в цементе щелочных оксидов выше 1 % может вызвать разрушение отвердевшего бетона на таком цементе.

Указанные выше основные оксиды находятся в клинкере не в свободном виде, а образуют при обжиге четыре основных минерала, относительное содержание которых в портландцементе следующее (%):

Сокращенное обозначение этих минералов следующее: C3S, C2S, C3A и C4AF.

Алит (C3S) — основной минерал клинкера, быстро твердеет и практически определяет скорость твердения и нарастания прочности портландцемента.

Белит (P-C2S) —медленно твердеет и достигает высокой прочности при длительном твердении.

Содержание минералов-силикатов в клинкере в сумме составляет около 75%, поэтому гидратация алита и белита в основном определяет свойства портландцемента. Оставшиеся 25% объема клинкера между кристаллами алита и белита заполнены кристаллами СзА, C4AF, стекла и второстепенными минералами.

Трехкальциевый алюминат (СзА) Он очень быстро гидратирует и твердеет. Продукты гидратации имеют пористую структуру и низкую прочность. Кроме того, СзА является причиной сульфатной коррозии цемента, поэтому его содержание в сульфатостойком цементе ограничено 5%.

Четырехкальциевый алюмоферрит (C4AF) —По скорости гидратации этот минерал занимает как бы промежуточное положение между алитом и белитом и не оказывает определяющего значения на скорость твердения и тепловыделение портландцемента.

Клинкерное стекло присутствует в промежуточном веществе в количестве 5... 15%, которое в основном состоит из СаО, А12О3, MgO, K2O и Na2O.

При правильно рассчитанной и тщательно подготовленной и обожженной сырьевой смеси клинкер не должен содержать свободного оксида кальция СаО, так как пережженная при температуре около 1500°С известь, так же как и магнезия MgO, очень медленно гасится, увеличиваясь в объеме, что может привести к растрескиванию уже затвердевшего бетона.

Производство портландцемента. Сырье для производства портландцемента должно содержать 75...78% СаСОз и 22...25% глинистого вещества.. В качестве топлива применяют природный газ, сокращается использование каменного угля и мазута.

Технологический процесс производства портландцемента состоит из следующих основных операций: добычи известняка и глины, подготовки сырьевых материалов и корректирующих добавок, приготовления из них однородной смеси заданного состава, обжига смеси и измельчения клинкера в тонкий порошок совместно с гипсом, а иногда с добавками.

В зависимости от приготовления сырьевой смеси различают два основных способа производства портландцемента: мокрый и сухой. При мокром способе сырьевые материалы измельчают и смешивают в присутствии воды и смесь в виде жидкого шлама обжигают во вращающихся печах; при сухом способе материалы измельчают, смешивают и обжигают в сухом виде. В последнее время все шире начинает применяться комбинированный способ приготовления сырьевой смеси, по которому сырьевую смесь подготовляют по мокрому способу, затем шлам обезвоживают и из него приготовляют гранулы, которые обжигают по сухому способу.

1. В зоне испарения при постепенном повышении температуры с 70 до 200°С испаряется влага; сырьевая смесь подсушивается. Подсушенный материал комкуется. Перемещаясь, комья распадаются на более мелкие гранулы. В печах сухого способа зона испарения отсутствует.

2. В зоне подогрева при постепенном нагревании сырья с 200 до 700°С выгорают органические примеси, из глиняных минералов удаляется кристаллохимическая вода (при 450...500°С) и образуется безводный каолинит Al2O3*2SiO2. Зоны испарения и подогрева при мокром способе занимают 50...60% длины печи.

3. В зоне декарбонизации температура обжигаемого материала повышается с 700 до 1100°С; происходит диссоциация карбонатов кальция и магния с образованием свободных СаО и MgO. Одновременно продолжается распад глинистых минералов на оксиды SiO2, AI2O3, Fe2O3, которые вступают в химическое взаимодействие с СаО. В результате этих реакций, происходящих в твердом состоянии, образуются минералы ЗСаО-АЬОз, СаО-АЬОз и частично 2CaO-SiO2.

4. В зоне экзотермических реакций при температуре 1200... 1 300°С завершается процесс твердофазового спекания материала, образуются ЗСаО-А12О3, 4СаО-Al203-Fe203 и белит, резко уменьшается количество свободной извести, но достаточное длянасыщения двухкальциевого силиката до трехкальциевого.

5. В зоне спекания при температурах 1300...1450...1300°С происходит частичное плавление материала (20...30% обжигаемой смеси). В расплав переходят все клинкерные минералы, кроме 2CaO-SiO2, все легкоплавкие примеси сырьевой смеси. Алит кристаллизуется из расплава в результате растворения в нем оксида кальция и двухкальциевого силиката. Это соединение плохо растворимо в расплаве, вследствие чего выделяется в виде мелких кристаллов, которые в дальнейшем растут. Понижение температуры с 1450 до 1300°С вызывает кристаллизацию из расплава ЗСаО-А12О3, 4СаО-Al2O3-Fe2O3 и MgO которая заканчивается в зоне охлаждения.

6. В зоне охлаждения температура клинкера понижается с 1300 до 1000°С, здесь полностью формируются его структура и состав, включающий алит C3S, белит C2S, СзА, C4AF, MgO (периклаз), стекловидную фазу и второстепенные составляющие. Границы зон во вращающейся печи достаточно условны и не являются стабильными. Меняя режим работы печи, можно смещать зоны и регулировать тем самым процесс обжига.

Образовавшийся таким образом раскаленный клинкер поступает в холодильник, где резко охлаждается движущимся навстречу ему холодным воздухом. Клинкер, выходящий из холодильника вращающихся печей с температурой около 100°С и более, поступает на склад для окончательного охлаждения и вылеживания (магазинирования), где он находится до 15 дней. Если известь содержится в клинкере в свободном виде, то в течение вылеживания она гасится влагой воздуха. На высокомеханизированных заводах с четко организованным технологическим процессом качество клинкера оказывается настолько высоким, что отпадает необходимость его вылеживания.

Помол клинкера совместно с добавками производят в трубных многокамерных мельницах.

Тонкое измельчение клинкера с гипсом и активными минеральными добавками в тонкий порошок производится преимущественно в сепараторных установках, работающих по открытому или замкнутому циклу.

Готовый портландцемент (с температурой 100°С и более) пневматическим транспортом направляется в силосы для охлаждения. После этого его расфасовывают по 50 кг в многослойные бумажные мешки или загружают в специально оборудованный автомобильный, железнодорожный или водный транспорт.

Твердение портландцемента. Технические характеристики цемента

При затворении портландцемента водой образуется пластичное клейкое цементное тесто, постепенно густеющее и переходящее в камневидное состояние.

При твердении портландцемента происходит ряд весьма сложных химических и физических явлений. Типичными реакциями для твердения портландцемента и других вяжущих веществ являются реакции гидратации, протекающие с присоединением воды. Они могут идти без распада основного вещества или сопровождаться его распадом (реакции гидролиза) .

Процесс твердения портландцемента в основном определяется гидратацией силикатов, алюминатов и алюмоферритов кальция. Взаимодействие C3S с водой при комнатной температуре происходит при полной гидратации: .

2(3CaO-SiO2) + 6Н2О = 3CaO-2SiO2-3H2O + ЗСа(ОН)2

Поскольку жидкая фаза твердеющей системы быстро и полностью насыщается оксидом кальция, полагают, что вначале образуется гидросиликат кальция C2SH2, который по мере выделения извести в твердую фазу переходит в CSH(B). Этому способствует также переход в раствор щелочей, снижающих в нем концентрацию извести.

Гидратация р = C2S в тех же условиях идет по приведенной схеме, причем известь выделяется в меньшем количестве.

Взаимодействие СзА с водой протекает с большей скоростью при температуре затворения 21 °С и значительном выделении тепла:

ЗСаО-А12О3 + 6Н2О = ЗСаО-А12О3-6Н2О

СзАНб является единственно устойчивым соединением из всех гидроалюминатов кальция.

Трехкальциевый алюминат при взаимодействии с водой в присутствии двуводного гипса, гидратируясь при обычных температурах, образует комплексные соединения, трисульфогидроалюминат кальция (эттринит)

ЗСаО-А12О3 + 3CaSO4-2H2O + 26Н2О = ЗСаО-А12О3-3CaSO4-32H2O

который предотвращает дальнейшую быструю гидратацию СзА за счет образования защитного слоя и замедляет (до 3...5 ч) первую стадию процесса твердения — схватывание цемента. Вместе с тем добавка гипса

Алюмоферритная фаза, представленная в обыкновенных портландцементах четырехкальциевым алюмоферритом (C4AF), В условиях гидратации портландцемента, т. е. насыщенного известью раствора, при нормальной температуре взаимодействует с водой стехиометрически:

4CaO-Al2O3-Fe2O3 + 2Са(ОН)2 + ЮН2О = = ЗСаО-А12О3-6Н2О + 3CaO-Fe2O3-6H2O

В результате образуются весьма устойчивые смешанные кристаллы Сз(АF)Нв.

Кроме описанных химических преобразований, протекающих при твердении цемента, большое значение имеют физические и физико-химические процессы, которые сопровождают химические реакции и приводят при затворении водой к превращению цемента сначала в пластичное тесто, а затем в прочный затвердевший камень.

В современном представлении механизм и последовательность процессов твердения могут быть представлены следующим образом. После добавления к цементу воды образуется раствор, который пересыщен относительно гидроксида кальция и содержит ионы Са2+, SOf~~, OH~, Na+, K+. Из этого раствора в качестве первичных новообразований осаждаются гидросульфоалюминат и гид-роксид кальция. На этом этапе упрочнения системы не происходит, гидратация минералов носит как бы скрытый характер. Второй период гидратации (схватывание) начинается примерно через час с образованием вначале очень тонких кристаллов гидросиликатов кальция.

Гидросиликаты и гидросульфоалюминаты кальция растут в виде длинных волокон, пронизывающих жидкую фазу в виде мостиков, заполняющих поры. Образуется пористая матрица, которая постепенно упрочняется и заполняется продуктами гидратации. В результате подвижность твердых частиц снижается и цементное тесто схватывается. Такая первая высокопористая с низкой прочностью структура, обусловливающая схватывание, состоит главным образом из продуктов взаимодействия с водой СзА и гипса.

В течение третьего периода (твердения) поры постепенно заполняются продуктами гидратации клинкерных минералов, происходит уплотнение и упрочнение структуры цементного камня в результате образования все большего количества гидросиликатов кальция.

В конечном виде цементный камень представляет собой неоднородную систему — сложный конгломерат кристаллических и коллоидных гидратных образований, непрореагировавших остатков цементных зерен, тонкораспределенных воды и воздуха. Его называют иногда микробетоном.

Технические характеристики цемента

Тонкость помола цемента характеризуется также величиной удельной поверхности (м2/кг), суммарной поверхностью зерем (м2) в 1 кг цемента. Удельная поверхность заводских цементов составляет 250...300 м2/кг. В ряде случаев с целью повышения активности заводского цемента и для получения быстротвердеющего цемента тонкость помола повышают. Условно считают, что прирост удельной поверхности цемента на каждые 100 м2/кг повышает его активность на 20...25%.

Увеличение удельной поверхности цемента более 300... 350 м2/кг связано со значительным снижением производительностильниц; кроме того, такие цементы увеличивают водопотребность, растет тепловыделение, возрастают усадочные деформации. Ф

Водопотребность цемента определяется количеством воды (% от массы цемента), необходимым для получения теста нормальной густоты. Водопотребность портландцемента 24...28%, при введении активных минеральных добавок осадочного происхождения (диатомита, трепела, опоки) водопотребность повышается до 32...37%.

Продолжительность хранения. Длительное хранение цемента Даже в самых благоприятных условиях влечет за собой некоторую потерю его активности. После 3 мес хранения потеря активности цемента может достигать 20%, а через год — 40%

Плотность - Ист=3,00–3,15; Нас=1,1–1,6 гр/см3

Тонкость помола. С увеличением тонкости помола прочность цемента возрастает. Средний размер зерен портландцемента, выпускаемого отечественными заводами, составляет примерно 40 мкм. Заводские цементы должны иметь тонкость помола, характеризуемую остатком на сите № 008 (размер ячейки в свету 0,08 мм) не более 15%.

Удельная поверхность – составляет 2500-3000 см2/гр

Сроки схватывания - начало( игла прибор Вика не доходит до дна 1-2 мм) – не ранее 45 мин; конец(игла опускается не более чем на 1-2 мм) – не позднее 10 часов

Структура цементного камня

Отвердевший цементный камень представляет собой микроскопически неоднородную систему, состоящую из кристаллических сростков и гелеобразных масс, имеющих частицы коллоидных размеров. Неоднородность структуры цементного камня усиливается и тем, что в нем содержатся зерна цемента, не полностью прореагировавшие с водой.

Цементный камень включает продукты гидротации цемента: 1) гель гидросиликата кальция обладет свойствами коллоидов; 2)относительно крупные кристаллы гидроокиси кальция (до 36%); 3) непрореагировавшие зерна; 4) поры геля (капиллярные поры и воздушные поры)

В цементе всегда находится вода (химически связанная, физико-химическая вода, физико-механическая вода) удаляется прокаливанием или высушиванием

Расширение и растрескивание цементного камня могут вызвать также свободные СаО и MgO, присутствующие в цементе при низком качестве обжига. Гашение их сопровождается значительным увеличением в объеме, и продукты этого гашения разрывают цементный камень. О таком цементе говорят, что он не отвечает требованиям стандарта в отношении равномерности изменения объема при твердении.

Прочность портландцемента. Согласно ГОСТ 10178—85, прочность портландцемента характеризуют пределами прочности при сжатии и изгибе. Марку цемента устанавливают по пределу прочности при изгибе образцов балочек 40X40X160 мм и при сжатии их половинок, изготовленных из раствора состава 1;3 (по массе) с нормальным песком при водоцементном отношении 0,4 и испытанных через 28 сут; образцы в течение этого времени хранят во влажных условиях при температуре (20±2)°С.

Предел прочности при сжатии в возрасте 28 сут называется активностью цемента.

Для приготовления образцов применяют чистый кварцевый песок постоянного зернового и химического составов, что позволяет исключить влияние качества песка на прочность цемента и получить сравнимые результаты. Прочность портландцемента нарастает неравномерно: на третий день она достигает примерно 40...50% марки цемента, а на седьмой — 60...70%. В, последующий период рост прочности цемента еще более замедляется, и на 28-день цемент набирает марочную прочность. Однако при благоприятных условиях твердение портландцемента может продолжаться месяцы и даже годы, в 2 .3 раза превысив марочную (28-суточную) прочность. Можно считать, что в среднем прирост прочности портландцемента подчиняется логарифмическому закону (рис. 5.10).

Теоретический предел прочности цементного камня при сжатии очень велик, составляет более 240...340 МПа. Практически при формовании бетонов прессованием была получена прочность 280 МПа и более.

Прочность цементного камня и скорость его твердения зависят от минералогического состава клинкера, тонкости помола цемента, содержания воды, влажности, температуры среды и продолжительности хранения.

Влияние минералогического состава на прочность портландцемента. Процесс нарастания прочности клинкерных минералов портландцемента различен. Наиболее быстро набирает прочность трехкальциевый силикат: за 7 сут твердения он набирает около 70% от 28-суточной прочности (рис, 5.11), дальнейшее нарастание прочности у C3S значительно замедляется

Другая картина твердения духкальциевого силиката. В начальный период твердения (до 28-суточного возраста) C2S набирает всего до 15% прочности C3S, но и в последующий период твердения двухкальциевый силикат начинает повышать свою прочность и в какой-то период достигает и даже может превысить прочность C3S. Это явление объясняется тем, что трехкальциевый силикат гидратирует быстрее, чем двухкальциевый. К 28-суточному возрасту гидратации C3S почти заканчи: вается, а гидратация C2S к этому времени начинает развиваться. Поэтому при необходимости получить бетон высокой прочности в короткие сроки применяют цемент с большим содержанием трехкальциевого силиката — так называемый алитовый цемент, и, наоборот, если требуется высокая прочность в более позднее время (например, в гидротехнических сооружениях), то можно применять белитовый цемент. Трехкальциевыд алюминат сам по себе имеет низкую прочность, однако значительно уско. ряет твердение цемента в начальный период. Этим свойством СзА пользу. ются, получая быстротвердеющий портландцемент. По минералогическому составу он отличается высоким со-держанием С3А и C3S (около 60...70%, в том числе до 10% СзА).

Тонкость помола. С увеличением тонкости помола прочность цемента возрастает. Средний размер зерен портландцемента, выпускаемого отечественными заводами, составляет примерно 40 мкм. Толщина гидратации зерен через 6... 12 мес твердения обычно не превышает 10...15 мкм (табл. 5.10). Таким образом, при обычном помоле портландцемента 30...40% клинкерной части его не участвует в твердении и формировании структуры камня. С увеличением тонкости помола цемента увеличивается степень гидратации цемента, возрастает содержание клеящих веществ — гидратов минералов — и повышается прочность цементного камня. Заводские цементы должны иметь тонкость помола, характеризуемую остатком на сите № 008 (размер ячейки в свету 0,08 мм) не более 15%. Обычно она равна 8...12%.

Стойкость цементного камня. Бетон в инженерных сооружениях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Среди компонентов бетона цементный камень наиболее подвержен развитию коррозионных процессов. Для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть коррозие-, морозо- и атмосферостойким.

Морозостойкость. Совместное попеременное действие воды и мороза влечет за собой разрушение бетонных сооружений. При отрицательных температурах вода, находящаяся в порах цементного камня, превращается в лед, который увеличивается в объеме примерно на 9% по сравнению с объемом воды. Лед давит на стенки пор и разрушает их.

Морозостойкость цементного камня зависит от минералогического состава клинкера, тонкости помола цемента и водоцементного отношения. До определенной тонкости помола (5000... 6000 см2/г) морозостойкость цемента увеличивается, но при дальнейшем возрастании тонкости помола морозостойкость падает. Это объясняется пористой структурой новообразований цемента сверхтонкого измельчения.

Присутствие в цементе в значительном количестве активных минеральных добавок отрицательно влияет на морозостойкость цементного камня вследствие высокой пористости их и низкой морозостойкости продуктов взаимодействия добавок с компонентами цементного камня. Среди минералов клинкера наименее морозостойким является СзА, поэтому его содержание в цементе для морозостойких бетонов не должно превышать 5...7%.

Увеличение водоцементного отношения понижает морозостойкость цементного камня вследствие повышения его пористости. Таким образом, для увеличения морозостойкости бетона необходимо применять цементы с низким содержанием С3А, с минимальным содержанием активных минеральных добавок и использовать бетонные смеси с возможно меньшим водоцементным отношением, тщательно уплотняя смесь при укладке.

Значительно повышают морозостойкость бетона поверхностно-активные добавки (СДБ, мылонафт). Пластифицирующие добавки СДБ существенно снижают водопотребность бетонных смесей при сохранении заданной подвижности и тем самым уменьшают пористость цементного камня. Некоторые гидрофоби-зующие добавки обладают воздухововлекающей способностью (пузырьки воздуха в бетонной смеси амортизируют давление льда), повышают однородность структуры цементного камня (придают водоотталкивающие свойства) и гидрофобизуют стенки пор и капилляров, увеличивая тем самым сопротивляемость цементного камня действию воды.

Способы ускорения гидротации и твердения

Факторы влияющие на скороть гидротации:

Влияние влажности и температуры среды. Твердение цементного камня и повышение его прочности могут продолжаться только при наличии в нем воды, так как твердение есть в первую очередь процесс гидратации.

Большое влияние на рост прочности цементного камня оказывают влажность и температура среды. Скорость химических реакций между клинкерными минералами и водой увеличивается с повышением температуры, а также значительно возрастает скорость уплотнения продуктов гидратации цемента. Твердение цементного камня на практике может происходить в широком диапазоне температур: нормальное твердение — при температуре 15...20°С, пропаривание — 8О...9О°С, автоклавная обработка — до 170...200°С, давление пара — до 0,8...1,2 МПа и твердение — при отрицательной температуре. Наиболее быстрый рост прочности цементного камня происходит при пропаривании под давлением в автоклавах, при этом бетон через 4...6 ч приобретает марочную прочность.

В условиях пропаривания при нормальном давлении твердение бетона происходит примерно в 2 раза медленнее, чем в автоклавах. Бетоны, подвергнутые тепловлажностной обработке при температуре до 100°С, в большинстве случаев приобретают только 70% проектной прочности и лишь иногда достигают 100%. Дальнейший рост их прочности, как правило, не наблюдается.

Твердения портландцементного камня при отрицательных температурах не происходит, так как вода превращается в лед. Однако за счет добавки СаСl, NaCl или их смеси бетон все же набирает прочность. Добавление к цементу электролитов СаСl, NaCl в количестве 5% и более от массы цемента повышает концентрацию растворенных веществ в воде и понижает температуру ее замерзания. Кроме того, хлористые соли являются ускорителями твердения цемента. Однако применение этих солей в количестве более 2% в железобетонных конструкциях не рекомендуется из-за возможной коррозии арматуры. В последнее время в качестве противоморозной добавки используют нитрит натрия NaNO2.

Коррозия цементного камня

в водных условиях по ряду ведущих признаков может быть разделена на три вида:

1-ый вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2 невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность. Следует отметить, что Са(ОН)2 хорошо растворяется в водах, которые содержат в незначительном количестве катионы кальция и магния в виде бикарбонатов Са(НСО3)2 и Mg(HCO3)2, придающих воде временную жесткость.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха

Са (ОН) 2 + СО2 = СаСОз + Н2О

Растворимость СаСОз в воде почти в 100 раз меньше растворимости Са(ОН)2- Однако существенное повышение стойкости цементного камня в пресных водах достигается введением в цемент гидравлических добавок. Они связывают Са(ОН)г в малорастворимое соединение — гидросиликат кальция: CO

Следующей мерой защиты бетона от I вида коррозии является применение цемента, выделяющего при своем твердении минимальное количество свободной Са(ОН)2- Таким цементом является белитовый, содержащий небольшое количество трехкальциевого силиката.

2-ой вид коррозии — разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы и уносятся фильтрующей через бетон водой, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

Наиболее характерны среди упомянутых обменных реакций те, которые протекают под действием хлористых и сернокислых солей. Сернокислый магний, взаимодействуя с Са(ОН)г цементного камня, образует гипс и гидроксид магния — аморфное вещество, не обладающее связностью и легко вымывающееся из бетона:

Са (ОН) 2 + MgSO4 + 2Н2О = CaSO4 • 2Н2О + Mg (ОН) 2

Между MgCl2 и Са(ОН)г протекает реакция

Са (ОН) 2 + MgCl2 = СаС12 + Mg (ОН) 2

Образовавшийся хлористый кальций хорошо растворяется в воде и уносится фильтрующей водой.

Коррозия цементного камня водами, содержащими свободные углекислоту и ее соли, происходит в такой последовательности. Вначале растворенная углекислота взаимодействует с Са(ОН)2

Са (ОН) 2 + СО2 == СаСОз + Н2О

и образуется труднорастворимый углекислый кальций, что положительно сказывается на сохранности бетона. Однако при высоком содержании в воде СОг углекислота действует разрушающе на цементный камень вследствие образования легкорастворимого бикарбоната кальция:

СаСОз + СО2+ Н2О = Са(НСО3)2

Приведенные реакции, схематически характеризующие разрушение цементного камня под действием воды, содержащей растворенные соли, показывают, что основной причиной этого раз-Рушения является содержание в цементном камне (бетоне) свободного гидроксида кальция Са(ОН)2. Если же ее связать в Другое труднорастворимое соединение, сопротивление бетона коррозии II вида должно возрасти. Это и имеет место при использовании активных минеральных добавок.

К 3-му виду коррозии относятся процессы, возникающие под Действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и привод^ к разрушению цементного камня.

Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

ЗСаО • А12О3 • 6Н2О + 3CaSO4 + 25H2O -*--+? ЗСаО • А12О3 • 3CaSO4 • 31Н2О

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень.

В результате реакции образуются кристаллы в виде длинных тонких игл, напоминающих под микроскопом некоторые бациллы. Имея такое внешнее сходство и разрушающее действие на цементный камень, гидросульфоалюминат кальция получил название "цементная бацилла". Цемент с низким содержанием трехкальциевого алюмината должен обладать повышенной сульфатостойкостью.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

Используя конструктивные меры, предотвратить действие воды на бетонную конструкцию возможно путем устройства гидроизоляции, водоотводов и дренажей. Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использованием бетонных смесей с минимальным водоцементным отношением, с тщательно подобранным зерновым составом заполнителей.

Роль активных минеральных добавок (трепела, опоки, диатомита, доменных гранулированных шлаков) в повышении водостойкости портландцемента рассмотрена ранее.

Специальные виды цемента

Белые и цветные цементы применяют для изготовления цветах бетонов, растворов отделочных смесей и цементных красок.

Смотрите также

Как выбрать душевую кабину?


Читайте также:
Лифты отис приходят в типовое жилье Раствор для тонкослойной кладки наружных и внутренних стен Акустические материалы Каковы основные принципы оформления жилья в зеленых оттенках? Какая фасадная краска сделает ваш дом уникальным?